Acute appendicitis diagnosis using artificial neural networks.
نویسندگان
چکیده
BACKGROUND Artificial neural networks is one of pattern analyzer method which are rapidly applied on a bio-medical field. OBJECTIVE The aim of this research was to propose an appendicitis diagnosis system using artificial neural networks (ANNs). METHODS Data from 801 patients of the university hospital in Dongguk were used to construct artificial neural networks for diagnosing appendicitis and acute appendicitis. A radial basis function neural network structure (RBF), a multilayer neural network structure (MLNN), and a probabilistic neural network structure (PNN) were used for artificial neural network models. The Alvarado clinical scoring system was used for comparison with the ANNs. RESULTS The accuracy of the RBF, PNN, MLNN, and Alvarado was 99.80%, 99.41%, 97.84%, and 72.19%, respectively. The area under ROC (receiver operating characteristic) curve of RBF, PNN, MLNN, and Alvarado was 0.998, 0.993, 0.985, and 0.633, respectively. CONCLUSIONS The proposed models using ANNs for diagnosing appendicitis showed good performances, and were significantly better than the Alvarado clinical scoring system (p < 0.001). With cooperation among facilities, the accuracy for diagnosing this serious health condition can be improved.
منابع مشابه
تشخیص آپاندیسیت حاد در کودکان با استفاده از شبکه های عصبی مصنوعی
Introduction: Acute appendicitis is one of the most common causes of emergency surgery especially in children. Proper and on-time diagnosis may decrease the unwanted complications. In despite of diagnostic methods, a significant number of patients yet and up with negative laparotomies. The aim of this study was to assess the role of artificial neural networks in diagnosis of acute appendicitis ...
متن کاملThe Optimization Variables of Input Data of Artificial Neural Networks for Diagnosing Acute Appendicitis
The purpose of this study is to suggest an efficient diagnosis system for acute appendicitis using the artificial neural network model with optimized input variables. Acute appendicitis is one of the most common diseases of the abdomen. However, the accuracy of diagnosis is not high even with experienced surgeons due to its complex symptoms. We used the artificial neural networks model to analy...
متن کاملNovel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks.
BACKGROUND Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. METHODS Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to c...
متن کاملApplication of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images
Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...
متن کاملمقایسه ارزش تشخیصی مدل شبکه عصبی مصنوعی با آزمایش های متداول در شناسایی موارد مشکوک به آپاندیسیت حاد
Background and purpose: Diagnosis of acute appendicitis can be difficult due to similarity of symptoms to many abdominal diseases. Delayed diagnosis could expose the patient to serious conditions. In this study we compared the Artificial Neural Network (ANN) models and conventional laboratory tests in diagnosis of appendicitis. Materials and methods: The study population included 100 patients ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Technology and health care : official journal of the European Society for Engineering and Medicine
دوره 23 Suppl 2 شماره
صفحات -
تاریخ انتشار 2015